Self-organizing neural networks for sequence processing
نویسنده
چکیده
This work investigates the self-organizing representation of temporal data in prototypebased neural networks. Extensions of the supervised learning vector quantization (LVQ) and the unsupervised self-organizing map (SOM) are considered in detail. The principle of Hebbian learning through prototypes yields compact data models that can be easily interpreted by similarity reasoning. In order to obtain a robust prototype dynamic, LVQ is extended by neighborhood cooperation between neurons to prevent a strong dependence on the initial prototype locations. Additionally, implementations of more general, adaptive metrics are studied with a particular focus on the built-in detection of data attributes involved for a given classification task. For unsupervised sequence processing, two modifications of SOM are pursued: the SOM for structured data (SOMSD) realizing an efficient back-reference to the previous best matching neuron in a triangular low-dimensional neural lattice, and the merge SOM (MSOM) expressing the temporal context as a fractal combination of the previously most active neuron and its context. The first SOMSD extension tackles data dimension reduction and planar visualization, the second MSOM is designed for obtaining higher quantization accuracy. The supplied experiments underline the data modeling quality of the presented methods.
منابع مشابه
Diagnosis of brain tumor using PNN neural networks
Cells grow and then need a very neat method to create new cells that work properly to maintain the health of the body. When the ability to control the growth of the cells is lost, they are unconsidered and often divided without order. Exemplified cells form a tissue mass called the tumor. In fact, brain tumors are abnormal and uncontrolled cell proliferations. Segmentation methods are used in b...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملGait Based Vertical Ground Reaction Force Analysis for Parkinson’s Disease Diagnosis Using Self Organizing Map
The aim of this work is to use Self Organizing Map (SOM) for clustering of locomotion kinetic characteristics in normal and Parkinson’s disease. The classification and analysis of the kinematic characteristics of human locomotion has been greatly increased by the use of artificial neural networks in recent years. The proposed methodology aims at overcoming the constraints of traditional analysi...
متن کاملMonthly runoff forecasting by means of artificial neural networks (ANNs)
Over the last decade or so, artificial neural networks (ANNs) have become one of the most promising tools formodelling hydrological processes such as rainfall runoff processes. However, the employment of a single model doesnot seem to be an appropriate approach for modelling such a complex, nonlinear, and discontinuous process thatvaries in space and time. For this reason, this study aims at de...
متن کامل